Respuesta :

Answer : The value of pH of the solution is, 5.6

Explanation : Given,

The dissociation constant for methylamine = [tex]K_b=3.7\times 10^{-4}[/tex]

First we have to calculate the value of [tex]K_a[/tex].

[tex]K_a\times K_b=10^{-14}[/tex]

[tex]K_a\times (3.7\times 10^{-4})=10^{-14}[/tex]

[tex]K_a=2.7\times 10^{-11}[/tex]

The equilibrium chemical reaction will be:

                     [tex]CH_3NH_3^++H_2O\rightleftharpoons H_3O^++CH_3NH_2[/tex]

Initial conc.      0.2                            0             0

At eqm.         (0.2-x)                          x             x

The expression for dissociation constant of acid is:

[tex]K_a=\frac{[H_3O^+][CH_3NH_2]}{[CH_3NH_3^+]}[/tex]

[tex]2.7\times 10^{-11}=\frac{(x)\times (x)}{(0.2-x)}[/tex]

By solving the term, we get the value of 'x'.

x = 2.3 × 10⁻⁶

x = -2.3 × 10⁻⁶

We are neglecting negative value of x.

Thus, the value of x = 2.3 × 10⁻⁶

[tex][H_3O^+]=x=2.3\times 10^{-6}M[/tex]

Now we have to calculate the value of pH.

[tex]pH=-\log [H^+][/tex]

[tex]pH=-\log (2.3\times 10^{-6})[/tex]

[tex]pH=5.6[/tex]

Therefore, the value of pH of the solution is, 5.6