Answer:
Length of pipe [tex]= 0.057[/tex] meter
Explanation:
Speed of a transverse wave on a string
[tex]v = \sqrt{\frac{F}{\mu} }[/tex]
where F is the tension in string and [tex]\mu[/tex] is the mass per unit length
Thus,
[tex]\mu = \frac{m}{L}[/tex]
Substituting the given values we get -
[tex]\mu = \frac{7.25 * 10^{-3}}{0.62}\\mu = 0.0117 \frac{Kg}{m}[/tex]
Speed of a transverse wave on a string
[tex]v = \sqrt{\frac{4510}{0.0117} } \\v = 620.86 \frac{m}{s}[/tex]
For third harmonic wave , frequency is equal to
[tex]f = \frac{nv}{2L}[/tex]
Substituting the given values, we get -
[tex]f = \frac{3 * 620.86}{2 * 0.62} \\f = 1502.08[/tex]
Length of pipe
[tex]L = \frac{nv}{4 f}[/tex]
Substituting the given values we get
[tex]n = 1[/tex] for first harmonic wave
[tex]L = \frac{344* 1}{4*1502.08} \\L = 0.057[/tex]
Length of pipe [tex]= 0.057[/tex] meter