Respuesta :

Given:

m(ar QT) = 220

m∠P = 54

To find:

The measure of arc RS.

Solution:

PQ and PT are secants intersect outside a circle.

If two secants intersects outside a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

[tex]$\Rightarrow \angle P = \frac{1}{2} (m \ ar (QT) - m \ ar (RS ))[/tex]

[tex]$\Rightarrow 54 = \frac{1}{2} (220- m \ ar (RS ))[/tex]

Multiply by 2 on both sides.

[tex]$\Rightarrow 2 \times 54 = 2 \times \frac{1}{2} (220- m \ ar (RS ))[/tex]

[tex]$\Rightarrow 108= 220- m \ ar (RS )[/tex]

Subtract 220 from both sides.

[tex]$\Rightarrow 108-220= 220- m \ ar (RS )-220[/tex]

[tex]$\Rightarrow -112= -m \ ar (RS )[/tex]

Multiply by (-1) on both sides.

[tex]$\Rightarrow (-112)\times(-1)= -m \ ar (RS )\times(-1)[/tex]

[tex]$\Rightarrow 112= m \ ar (RS )[/tex]

The measure of arc RS is 112.