Answer:
Height of the racket ball = 0.86 m
Explanation:
Given:
Speed of the tennis ball,[tex]v_x[/tex]= 31 m/s
Distance covered, [tex]R_x[/tex] = 13.3 m
We have to find the height of the racket ball when it left the racket.
Lets say that the time taken by the ball to hit the court be 't' seconds.
⇒ [tex]time=\frac{distance}{speed}[/tex]
⇒ [tex]time=\frac{R_x}{v_x}[/tex]
⇒ [tex]t=\frac{13.3\ m}{31.0\ ms^-^1}[/tex]
⇒ [tex]t=0.42[/tex] seconds
Now we have to find the height lets say that the height is 'h' meter.
⇒ [tex]h_y=u_yt + \frac{a_yt^2}{2}[/tex] ...second equation of motion
⇒ [tex]h_y=0 + \frac{gt^2}{2}[/tex] ...initial velocity = 0 and acceleration = gravity
⇒ [tex]h_y=\frac{9.8(0.42)^2}{2}[/tex]
⇒ [tex]h_y=\frac{1.72}{2}[/tex]
⇒ [tex]h_y=0.86[/tex] meter.
So the height of the racket ball when it left the racket is of 0.86 m.