A tennis ball is struck in such a way that it leaves the racket with a speed of 31.0m/s in the horizontal direction. When the ball hits the court, it is a distance of 13.3m from the racket. Find the height of the racket ball when it left the racket.

Respuesta :

Answer:

Height of the racket ball = 0.86 m

Explanation:

Given:

Speed of the tennis ball,[tex]v_x[/tex]= 31 m/s

Distance covered, [tex]R_x[/tex] = 13.3 m

We have to find the height of the racket ball when it left the racket.

Lets say that the time taken by the ball to hit the court be 't' seconds.

⇒ [tex]time=\frac{distance}{speed}[/tex]

⇒ [tex]time=\frac{R_x}{v_x}[/tex]

⇒ [tex]t=\frac{13.3\ m}{31.0\ ms^-^1}[/tex]

⇒ [tex]t=0.42[/tex] seconds

Now we have to find the height lets say that the height is 'h' meter.

⇒ [tex]h_y=u_yt + \frac{a_yt^2}{2}[/tex]     ...second equation of motion

⇒ [tex]h_y=0 + \frac{gt^2}{2}[/tex]          ...initial velocity = 0 and acceleration = gravity

⇒ [tex]h_y=\frac{9.8(0.42)^2}{2}[/tex]

⇒ [tex]h_y=\frac{1.72}{2}[/tex]

⇒ [tex]h_y=0.86[/tex] meter.

So the height of the racket ball when it left the racket is of 0.86 m.