Respuesta :

Answer:

3x - 4y - 7 = 0

Step-by-step explanation:

We know that the equation of a straight line passing through two known points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is given by

[tex]\frac{y - y_2}{y_2 - y_1} = \frac{x - x_2}{x_2 - x_1}[/tex]

Therefore, the equation of the straight line passing through the points (21,14) and (49,35) will be

[tex]\frac{y - 35}{35 - 14} = \frac{x - 49}{49 - 21}[/tex]

⇒ [tex]\frac{y - 35}{21} = \frac{x - 49}{28}[/tex]

⇒ 4(y - 35) = 3(x - 49)

⇒ 4y - 140 = 3x - 147

3x - 4y - 7 = 0 (Answer)