(a) Recursive formula is [tex]610 ( 1 + \frac{1.2}{100})^n[/tex]
(b) Explicit formula is [tex]610,000 ( 1 + \frac{1.2}{100})^1[/tex]
(c) The population in 2017 will be 703876
(d) The population of 750, 000 will reach in 17 years and 4 months
Explanation:
Given:
Population in 2005 = 610,000
Rate of increase = 1.2%
(a) Recursive formula = ?
Let n be the number of years:
So, population increase in n years = [tex]610,000 ( 1 + \frac{1.2}{100})^n[/tex]
Thus, recursive formula is [tex]610 ( 1 + \frac{1.2}{100})^n[/tex]
(b) Explicit formula = ?
In one year, the population increase will be [tex]610,000 ( 1 + \frac{1.2}{100})^1[/tex]
Thus, the explicit formula is [tex]610,000 ( 1 + \frac{1.2}{100})^1[/tex]
(c)
Number of years between 2005 to 2017 = 12 years
So, population increase in 12 years is [tex]610,000 ( 1 + \frac{1.2}{100})^1^2[/tex]
P = [tex]610000 ( 1.154)[/tex]
P = 703876
Thus, the population in 2017 will be 703876
(d)
When will the population hit 750,000
Time, t = ?
[tex]750000 = 610000(1+\frac{1.2}{100})^t\\ \\\frac{75}{61} = (\frac{101.2}{100})^t\\ \\1.23 = (1.012)^t\\\\t = 17.4 years[/tex]
Thus, the population of 750, 000 will reach in 17 years and 4 months