Morris has $1,000 to invest. He is considering two investment options. Option A pays 0.5% simple interest. Option B pays 0.75% interest compounded annually. What is the value of each investment option at 5 years?

Respuesta :

Answer:

Therefore total amount after [tex]5 \ years[/tex] at the rate of [tex]0.5[/tex]% is [tex]1025\ dollars[/tex].

Therefore total amount after [tex]5 \ years[/tex] at the rate of [tex]0.75[/tex]% is [tex]1038\ dollars[/tex].

Step-by-step explanation:

Given that,

                 Principle Amount [tex](P)= 1000\ dollars[/tex], Time [tex]=[/tex] [tex]5\ years[/tex] and he is considering two investment options. According to his investment options, Rate of simple interest for option [tex]A[/tex] is [tex]0.5[/tex]% and Rate of compounded Interest for option [tex]B[/tex] is [tex]0.75[/tex]%.

Now, considering option [tex]A[/tex].

                     Principle Amount [tex](P)= 1000\ dollars[/tex]

                    Time [tex]=[/tex] [tex]5\ years[/tex]

                    Rate of Interest [tex]=0.5[/tex]%

Simple Interest [tex]=(SI)=\frac{P\times R\times\ T}{100}[/tex]

                                      [tex]=\frac{1000\times 0.5\times 5}{100}[/tex]

                                      [tex]=\frac{2500}{100}[/tex]

                                      [tex]=25[/tex]

Total Amount [tex](A)=[/tex] Principle Amount [tex](P)+[/tex] Simple Interest [tex](SI)[/tex]

                              [tex]= 1000+25[/tex]

                              [tex]=1025[/tex]

Therefore total amount after [tex]5 \ years[/tex] at the rate of [tex]0.5[/tex]% is [tex]1025\ dollars[/tex].

Now, considering option [tex]B[/tex].

                        Principle Amount [tex](P)= 1000\ dollars[/tex]

                       Time [tex]=[/tex] [tex]5\ years[/tex]

                       Rate of Interest [tex]=0.75[/tex]%

Total Amount after [tex]5\ years[/tex] [tex]= P(1+\frac{R}{100} )^{5}[/tex]

                                             [tex]=1000(1+\frac{0.75}{100} )^{5}[/tex]

                                             [tex]= 1000(1.0075)^{5}[/tex]

                                             [tex]=1000\times 1.0380[/tex]

                                             [tex]=1038.06[/tex]

Therefore total amount after [tex]5 \ years[/tex] at the rate of [tex]0.75[/tex]% is [tex]1038\ dollars[/tex].