Respuesta :

Given:

The given triangle is a right angled triangle.

The length of the hypotenuse is 17 units.

One of the legs of the triangle measure x units.

The one of the angles of the right triangle is 60°

We need to determine the value of x.

Value of x:

The value of x can be determined using the trigonometric ratio.

Thus, we have;

[tex]sin \ \theta=\frac{opp}{hyp}[/tex]

Substituting [tex]\theta=60^{\circ}[/tex], [tex]opp=x[/tex] and [tex]hyp=17[/tex] in the above formula, we get;

[tex]sin \ 60^{\circ}=\frac{x}{17}[/tex]

Multiplying both sides of the equation by 17, we get;

[tex]sin \ 60^{\circ} \times 17=x[/tex]

Simplifying, we get;

[tex]0.866 \times 17=x[/tex]

Multiplying, we get;

[tex]14.722=x[/tex]

Rounding off to the nearest tenth, we get;

[tex]14.7=x[/tex]

Thus, the value of x is 14.7