The temperature of a gas is 100 K and its volume is 500.0 ml. If the volume increases to 1,000.0 ml,
what is the new temperature of the gas?

Respuesta :

Space

Answer:

T₂ = 200 K

General Formulas and Concepts:

Math

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Chemistry

Gas Laws

Charles' Law: [tex]\displaystyle \frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]

  • V is volume
  • T is temperature (in Kelvins)

Explanation:

Step 1: Define

T₁ = 100 K

V₁ = 500.0 mL

V₂ = 1,000.0 mL

T₂ = ?

Step 2: Find T₂

  1. Substitute [CL]:                     [tex]\displaystyle \frac{500.0 \ mL}{100 \ K} = \frac{1,000.0 \ mL}{x \ K}[/tex]
  2. Cross-multiply:                     [tex]\displaystyle 500.0x \ mL \cdot K = 100000 \ mL \cdot K[/tex]
  3. Isolate x:                               [tex]x = 200 \ K[/tex]

Step 3: Check

We are given 1 sig fig as our lowest. Follow sig fig rules and round.

Since our final answer is in 1 sig fig, there is no need to round.

Answer:

200k

Explanation: