Find the length of CD

Answer:
D
Step-by-step explanation:
Calculate the length using the distance formula
d = √ (x₂ - x₁ )² + (y₂ - y₁ )²
with (x₁, y₁ ) = C(3, - 2) and (x₂, y₂ ) = D(7, - 8)
CD = [tex]\sqrt{(7-3)^2+(-8+2)^2}[/tex]
= [tex]\sqrt{4^2+(-6)^2}[/tex]
= [tex]\sqrt{16+36}[/tex]
= [tex]\sqrt{52}[/tex] ≈ 7.2 → D
Length of CD is 7.2 unit approx Option D.
Step-by-step explanation:
Given,
The two points are C(3,-2) and D(7,-8).
To find the length of CD.
Formula
The distance of two points ([tex]x_{1} ,y_{1}[/tex]) and ([tex]x_{2} ,y_{2}[/tex]) is [tex]\sqrt{(x_{2}-x_{1} )^{2} +(y_{2}-y_{1} ) ^{2} }[/tex]
Now,
Putting,
[tex]x_{1}= 3,y_{1}=-2, x_{2}=7, y_{2}=-8[/tex] we get,
CD = [tex]\sqrt{(7-3)^{2}+(-8+2)^{2} }[/tex]
= [tex]\sqrt{52}[/tex] = 7.2 (approx)