Respuesta :

Given:

[tex]$\frac{6}{a^{2}-7 a+6}, \frac{3}{a^{2}-36}[/tex]

To find:

The LCD of the fractions.

Solution:

LCD means least common denominator.

Let us find the least common multiplier for the denominator.

The denominators are [tex]\left(a^{2}-7 a+a\right),\left(a^{2}-36\right)[/tex].

Factor [tex]\left(a^{2}-7 a+a\right)[/tex]:

[tex]a^{2}-7 a+6=\left(a^{2}-a\right)+(-6 a+6)[/tex]

Take a common in first 2 terms and -6 common in next two terms.

                  [tex]=a(a-1)-6(a-1)[/tex]

Take out common factor (a - 1).

[tex]\left(a^{2}-7 a+a\right)=(a-1)(a-6)[/tex] ------------- (1)

Factor [tex]\left(a^{2}-36\right)[/tex]:

[tex]\left(a^{2}-36\right)=\left(a^{2}-6^2\right)[/tex]

Using identity: [tex](a^2-b^2)=(a-b)(a+b)[/tex]

[tex]\left(a^{2}-36\right)=(a-6)(a+6)[/tex]  ------------- (1)

From (1) and (2),

LCM of [tex]\left(a^{2}-7 a+a\right),\left(a^{2}-36\right)=(a-1)(a-6)(a+6)[/tex]

Therefore LCD is (a - 1)(a - 6)(a + 6).