shiso
contestada

A circle is shown. Secants S V and T V intersect at point V outside of the circle. Secant S V intersects the circle at point W. Secant T V intersects the circle at point U. The length of T U is y minus 2, the length of U V is 8, the length of S W is y +4, and the length of W V is 6. What is the length of line segment SV? 6 units 8 units 12 units 16 units

Respuesta :

Given:

Secants S V and T V intersect at point V outside of the circle. Secant S V intersects the circle at point W. Secant T V intersects the circle at point U.

The length of TU is (y - 2).

The length of UV is 8.

The length of SW is (y + 4)

The length of WV is 6.

We need to determine the length of line segment SV.

Value of y:

The value of y can be determined using the intersecting secant theorem.

Applying, the theorem, we get;

[tex]WV \times SV=UV \times TV[/tex]

Substituting the values, we have;

[tex]6 \times (y+4+6)=8 \times (y-2+8)[/tex]

   [tex]6 \times (y+10)=8 \times (y+6)[/tex]

          [tex]6y+60=8y+48[/tex]

        [tex]-2y+60=48[/tex]

               [tex]-2y=-12[/tex]

                   [tex]y=6[/tex]

Thus, the value of y is 6.

Length of SV:

The length of SV is given by

[tex]SV=SW+WV[/tex]

[tex]SV=y+4+6[/tex]

[tex]SV=6+4+6[/tex]

[tex]SV=16[/tex]

Thus, the length of SV is 16 units.

Hence, Option D is the correct answer.

Answer:

16

Step-by-step explanation:

16