Respuesta :

Given:

The given function is [tex]F(t)=4 \cdot \frac{1}{2^{3 t}}[/tex]

We need to determine the value of F(1)

Value of F(1):

The value of F(1) can be determined by substituting t = 1 in the function [tex]F(t)=4 \cdot \frac{1}{2^{3 t}}[/tex]

Hence, substituting t = 1 in the function [tex]F(t)=4 \cdot \frac{1}{2^{3 t}}[/tex], we get;

[tex]F(1)=4 \cdot \frac{1}{2^{3 (1)}}[/tex]

Simplifying the values, we get;

[tex]F(1)=4 \cdot \frac{1}{2^{3}}[/tex]

Simplifying the denominator, we have;

[tex]F(1)=4 \cdot \frac{1}{8}}[/tex]

Dividing the terms, we have;

[tex]F(1)=\frac{1}{2}[/tex]

Thus, the value of F(1) is [tex]\frac{1}{2}[/tex]

Hence, Option A is the correct answer.