Answer:
(3x + 7)
(4x + 8)
Step-by-step explanation:
The given expresion that represents the area is
[tex]12 {x}^{2} + 52x + 56[/tex]
We factor 4 to get:
[tex]4(3 {x}^{2} + 13x + 14)[/tex]
Split the middle term now to get:
[tex]4(3 {x}^{2} + 6x + 7x + 14)[/tex]
We now factor by grouping to get:
[tex]4(3x(x + 2) + 7(x + 2))[/tex]
Factor further to get;
[tex]4(3x + 7)(x + 2)[/tex]
Or
[tex](3x + 7)(4x + 8)[/tex]
The factors are:
(4x + 8)
(3x+7)