Respuesta :

Answer:

C) -120/119

Step-by-step explanation:

Use double angle formula:

tan(2θ) = 2 tan θ / (1 − tan²θ)

To find tan θ from sin θ, draw a right triangle in quadrant II.  Sine is opposite over hypotenuse, so using Pythagorean theorem, the adjacent side is:

a² + b² = c²

5² + b² = 13²

b = -12

So tan θ = -5/12.

Plugging in:

tan(2θ) = 2 (-5/12) / (1 − (-5/12)²)

tan(2θ) = (-5/6) / (1 − (25/144))

tan(2θ) = (-5/6) / (119/144)

tan(2θ) = (-5/6) × (144/119)

tan(2θ) = -120/119