Respuesta :

The given system of equations in augmented matrix form is

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\-6&1&2&4&-12\\1&-3&-3&5&-20\\-2&5&6&0&12\end{array}\right][/tex]

If you need to solve this, first get the matrix in RREF:

  • Add 2(row 1) to row 2, row 1 to -3(row 3), and 2(row 1) to 3(row 4):

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&11&5&-13&37\\0&19&10&4&-10\end{array}\right][/tex]

  • Add 11(row 2) to -5(row 3), and 19(row 1) to -5(row 4):

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&-164&132&-1052\end{array}\right][/tex]

  • Add 164(row 3) to -91(row 4):

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&13080&-39240\end{array}\right][/tex]

  • Multiply row 4 by 1/13080:

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&1&-3\end{array}\right][/tex]

  • Add -153(row 4) to row 3:

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&0&-364\\0&0&0&1&-3\end{array}\right][/tex]

  • Multiply row 3 by -1/91:

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right][/tex]

  • Add 6(row 3) and -8(row 4) to row 2:

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&0&0&-10\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right][/tex]

  • Multiply row 2 by 1/5:

[tex]\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right][/tex]

  • Add -2(row 2), 4(row 3), and -2(row 4) to row 1:

[tex]\left[\begin{array}{cccc|c}3&0&0&0&3\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right][/tex]

  • Multiply row 1 by 1/3:

[tex]\left[\begin{array}{cccc|c}1&0&0&0&1\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right][/tex]

So the solution to this system is [tex](w,x,y,z)=(1,-2,4,-3)[/tex].