Find the value of x and the value of y

Answer:
A
Step-by-step explanation:
Since DE is parallel to AB and intersects the other 2 sides, it divides those sides proportionally, that is
[tex]\frac{BE}{EC}[/tex] = [tex]\frac{AD}{DC}[/tex]
Note that AD = 33 - 22 = 11
Substitute values into the ratio
[tex]\frac{x}{16}[/tex] = [tex]\frac{11}{22}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
2x = 16 ( divide both sides by 2 )
x = 8
To find y use similar triangles
Δ ABC is similar to Δ DEC, thus ratios of corresponding sides are equal
[tex]\frac{AB}{DE}[/tex] = [tex]\frac{AC}{DC}[/tex], substitute values
[tex]\frac{18}{y}[/tex] = [tex]\frac{33}{22}[/tex] = [tex]\frac{3}{2}[/tex] ( cross- multiply )
3y = 36 ( divide both sides by 3 )
y = 12
Thus y = 12, x = 8 → A
Answer:
y = 15.1 , x = 11.7
Step-by-step explanation:
Using pythagoras theorem
Hypothenus ^2 = opposite^2+adjacent ^2
33^2= 18^2+(16+Using pythagoras theorem
Hypothenus ^2 = opposite^2+adjacent ^2
22^2= 16^2+y^2
484= 256+y^2
484-256 = y^2 = 228
y = sqrt 228 = 15.0996688705= 15.1
Using pythagoras theorem
Hypothenus ^2 = opposite^2+adjacent ^2
33^2= 18^2+(16+x)^2
1089= 324+(16+x)^2
1089-324= (16+x)^2
765 = (16+x)^2
16 + x = sqrt 765
16 + x = 27.6586333719
x = 27.6586333719 -16 = 11.6586333719 = 11.7