Complete the equation of the line through (2,-2)(2,−2)left parenthesis, 2, comma, minus, 2, right parenthesis and (4,1)(4,1)left parenthesis, 4, comma, 1, right parenthesis. Use exact numbers.

Respuesta :

Answer:

[tex]y=\frac{3}{2}x-5[/tex]

Step-by-step explanation:

There are a couple of ways to solve this, depending on what you already know.

Point-Slope Form

[tex]y-y_1=m(x-x_1)[/tex]  where m is the slope and [tex](x_1, y_1)[/tex] is a point on the line.

First, calculate the slope using the two given points [tex](x_1, y_1), (x_2, y_2)[/tex].

[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{1-(-2)}{4-2}=\frac{3}{2}[/tex] .

Fill in the point-slope pattern

[tex]y-(-2)=\frac{3}{2}(x-2) \\ y+2=\frac{3}{2}x-3 \\ y=\frac{3}{2}x-5[/tex]

There's the equation in slope-intercept form ([tex]y=mx+b[/tex]).

Slope-Intercept Form

Use [tex]y=mx+b[/tex] directly.

Find the slope just like the above, so [tex]m=\frac{3}{2}[/tex].

Now, plug one of the points (either one!) together with m into

[tex]y=mx+b\\-2=\frac{3}{2}(2)+b \\ -2=3+b \\ b=-5[/tex]

Now you know the value of b, so the equation for the line is

[tex]y=\frac{3}{2}x-5[/tex]

Answer:

y = 3/2x - 5  

Step-by-step explanation:

(DID IT ON KHAN)

Let's find the slope:

Slope

=

1

(

2

)

4

2

=

3

2

 

Slope

 

=

4−2

1−(−2)

=

2

3

The equation is

y

=

3

2

x

+

b

y=

2

3

x+by, equals, start fraction, 3, divided by, 2, end fraction, x, plus, b for some

b

bb.

Hint #22 / 3

Let's plug the point

(

2

,

2

)

(2,−2)left parenthesis, start color #11accd, 2, end color #11accd, comma, start color #ed5fa6, minus, 2, end color #ed5fa6, right parenthesis to find

b

bb:

y

=

3

2

x

+

b

2

=

3

2

(

2

)

+

b

2

=

3

+

b

5

=

b

 

y

−2

−2

−5

 

=

2

3

x+b

=

2

3

(2)+b

=3+b

=b

Hint #33 / 3

The equation is

y

=

3

2

x

5

y=

2

3

x−5y, equals, start fraction, 3, divided by, 2, end fraction, x, minus, 5.