Respuesta :
Answer:
[tex]y=\frac{3}{2}x-5[/tex]
Step-by-step explanation:
There are a couple of ways to solve this, depending on what you already know.
Point-Slope Form
[tex]y-y_1=m(x-x_1)[/tex] where m is the slope and [tex](x_1, y_1)[/tex] is a point on the line.
First, calculate the slope using the two given points [tex](x_1, y_1), (x_2, y_2)[/tex].
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{1-(-2)}{4-2}=\frac{3}{2}[/tex] .
Fill in the point-slope pattern
[tex]y-(-2)=\frac{3}{2}(x-2) \\ y+2=\frac{3}{2}x-3 \\ y=\frac{3}{2}x-5[/tex]
There's the equation in slope-intercept form ([tex]y=mx+b[/tex]).
Slope-Intercept Form
Use [tex]y=mx+b[/tex] directly.
Find the slope just like the above, so [tex]m=\frac{3}{2}[/tex].
Now, plug one of the points (either one!) together with m into
[tex]y=mx+b\\-2=\frac{3}{2}(2)+b \\ -2=3+b \\ b=-5[/tex]
Now you know the value of b, so the equation for the line is
[tex]y=\frac{3}{2}x-5[/tex]
Answer:
y = 3/2x - 5
Step-by-step explanation:
(DID IT ON KHAN)
Let's find the slope:
Slope
=
1
−
(
−
2
)
4
−
2
=
3
2
Slope
=
4−2
1−(−2)
=
2
3
The equation is
y
=
3
2
x
+
b
y=
2
3
x+by, equals, start fraction, 3, divided by, 2, end fraction, x, plus, b for some
b
bb.
Hint #22 / 3
Let's plug the point
(
2
,
−
2
)
(2,−2)left parenthesis, start color #11accd, 2, end color #11accd, comma, start color #ed5fa6, minus, 2, end color #ed5fa6, right parenthesis to find
b
bb:
y
=
3
2
x
+
b
−
2
=
3
2
(
2
)
+
b
−
2
=
3
+
b
−
5
=
b
y
−2
−2
−5
=
2
3
x+b
=
2
3
(2)+b
=3+b
=b
Hint #33 / 3
The equation is
y
=
3
2
x
−
5
y=
2
3
x−5y, equals, start fraction, 3, divided by, 2, end fraction, x, minus, 5.