The relationship between the angles formed in a circle are described by
circle theorems.
The true statements are;
- [tex]\overline{ED}[/tex] ≅ [tex]\overline{FD}[/tex]
- [tex]m\widehat{FD}[/tex] = 120°
Reasons:
According to the outside angle theorem, we have;
[tex]\displaystyle m\angle EGD = \frac{m\widehat{EFD} - m\widehat{ED}}{2}[/tex]
Therefore;
2 × m∠EGD = [tex]m\widehat{EFD} - m\widehat{ED}[/tex]
2 × 60° = 120° = [tex]m\widehat{EFD} - m\widehat{ED}[/tex]
[tex]m\widehat{EFD} + m\widehat{ED}[/tex] = 360° sum of angles formed at the center of the circle
[tex]m\widehat{ED}[/tex] = 360° - [tex]\mathbf{m\widehat{EFD}}[/tex]
120° = [tex]\mathbf{m\widehat{EFD} - m\widehat{ED}}[/tex]
120° = [tex]m\widehat{EFD}[/tex] - (360° -
120° = 2·[tex]m\widehat{EFD}[/tex] - 360°
[tex]\displaystyle \frac{120^{\circ}}{2} = \mathbf{\frac{2 \cdot m\widehat{EFD} - 360^{\circ}}{2}}[/tex]
Which gives;
60° = [tex]m\widehat{EFD}[/tex] - 180°
[tex]m\widehat{EFD}[/tex] = 60° + 180° = 240°
[tex]m\widehat{EFD}[/tex] = 240°
[tex]m\widehat{ED}[/tex] = 360° - [tex]m\widehat{EFD}[/tex] = 360° - 240° = 120°
[tex]m\widehat{ED}[/tex] = 120°
[tex]m\widehat{ED}[/tex] = 2 × m∠EFD angle subtended by an arc at the center is twice the angle subtended at the circumference
∴ [tex]m\widehat{ED}[/tex] = 120° = 2 × m∠EFD
[tex]\displaystyle m\angle EFD = \frac{120^{\circ}}{2} = 60^{\circ}[/tex]
Therefore;
m∠EFD = m∠EGD = m∠G = 60°
m∠EGD = 60°
- m∠EFD ≅ m∠EGD by definition of congruency
[tex]m\widehat{ED}[/tex] = m∠ECD by definition of the measure of an arc
∴ [tex]m\widehat{ED}[/tex] = 120° = m∠ECD
∴ m∠ECD ≠ m∠EGD = 60°
m∠ECD [tex]\ncong[/tex] m∠EGD
Given that m∠EFD = 60°, and ΔEFD is an isosceles triangle, we have;
∠DEF = ∠FDE
∠DEF + ∠FDE = 180° - 60° = 120°
∴ ∠DEF = ∠FDE = 60°
Therefore;
ΔEFD is an equilateral triangle (all angles are equal to 60°)
[tex]\widehat{ED}[/tex] = [tex]\widehat{FD}[/tex] Equal chord subtend equal minor arcs theorem
Therefore;
- [tex]\underline{\overline{ED} \cong \overline{FD}}[/tex] by definition of congruency
[tex]\widehat{ED}[/tex] = 120° = [tex]\widehat{FD}[/tex]
- ∴ [tex]\underline{\widehat{FD} = 120^{\circ}}[/tex]
Learn more about circle theorems here:
https://brainly.com/question/13545681