Respuesta :
Value of [tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex] is [tex]\dfrac{1}{125^{(\frac{1}{ab})}}[/tex] .
Step-by-step explanation:
Here we have , a-b=3 . We need to evaluate : 125^(1/3a)/25^(1/2b) or ,
[tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex] . Let's find out:
⇒ [tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex]
⇒ [tex]\dfrac{5^3(^{1/3a})}{5^2(^{1/2b})}[/tex]
⇒ [tex]\dfrac{5(^{3/3a})}{5(^{3/2b})}[/tex]
⇒ [tex]5^{(\frac{1}{a}-\frac{1}{b})} = 5^{(\frac{b-a}{ab})}[/tex]
⇒ [tex]5^{(\frac{-3}{ab})}[/tex]
⇒ [tex]\dfrac{1}{125^{(\frac{1}{ab})}}[/tex]
Therefore, Value of [tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex] is [tex]\dfrac{1}{125^{(\frac{1}{ab})}}[/tex] .
Answer:
125
Step-by-step explanation:
[tex]\dfrac{125^{\frac{1}{3}a}}{25^{\frac{1}{2}b}} =[/tex]
[tex]= \dfrac{(5^3)^{\frac{1}{3}a}}{(5^2)^{\frac{1}{2}b}}[/tex]
[tex]= \dfrac{5^{3 \times \frac{1}{3}a} }{5^{2 \times \frac{1}{2}b}}[/tex]
[tex]= \dfrac{5^{\frac{3}{3}a}}{5^{\frac{2}{2}b}}[/tex]
[tex] = \dfrac{5^a}{5^b} [/tex]
[tex] = 5^{a - b} [/tex]
[tex] = 5^3 [/tex]
[tex] = 125 [/tex]