Respuesta :

Value of [tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex] is  [tex]\dfrac{1}{125^{(\frac{1}{ab})}}[/tex] .

Step-by-step explanation:

Here we have , a-b=3 . We need to evaluate : 125^(1/3a)/25^(1/2b) or ,

[tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex] . Let's find out:

⇒ [tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex]

⇒ [tex]\dfrac{5^3(^{1/3a})}{5^2(^{1/2b})}[/tex]

⇒ [tex]\dfrac{5(^{3/3a})}{5(^{3/2b})}[/tex]

⇒ [tex]5^{(\frac{1}{a}-\frac{1}{b})} = 5^{(\frac{b-a}{ab})}[/tex]

⇒ [tex]5^{(\frac{-3}{ab})}[/tex]

⇒ [tex]\dfrac{1}{125^{(\frac{1}{ab})}}[/tex]

Therefore, Value of [tex]\dfrac{125^{1/3a}}{25^{1/2b}}[/tex] is  [tex]\dfrac{1}{125^{(\frac{1}{ab})}}[/tex] .

Answer:

125

Step-by-step explanation:

[tex]\dfrac{125^{\frac{1}{3}a}}{25^{\frac{1}{2}b}} =[/tex]

[tex]= \dfrac{(5^3)^{\frac{1}{3}a}}{(5^2)^{\frac{1}{2}b}}[/tex]

[tex]= \dfrac{5^{3 \times \frac{1}{3}a} }{5^{2 \times \frac{1}{2}b}}[/tex]

[tex]= \dfrac{5^{\frac{3}{3}a}}{5^{\frac{2}{2}b}}[/tex]

[tex] = \dfrac{5^a}{5^b} [/tex]

[tex] = 5^{a - b} [/tex]

[tex] = 5^3 [/tex]

[tex] = 125 [/tex]