Respuesta :

Given:

Circle with chord and tangent.

To find:

The measure of angle 1.

Solution:

Let 2 be the adjacent angle of angle 1.

If a tangent and a chord intersect at a point, then the angle formed is half of the measure of the intercepted arc.

[tex]$\Rightarrow m\angle 2=\frac{1}{2} (248)^\circ[/tex]

[tex]$\Rightarrow m\angle 2=124^\circ[/tex]

Sum of the adjacent angles in a straight line is 180°.

⇒ m∠1 + m∠2 = 180°

⇒ m∠1 + 124° = 180°

Subtract 124° from both sides.

⇒ m∠1 = 56°

The measure of angle 1 is 56°.