Respuesta :
Answer: [tex]\bold{1.\quad \text{Vertex}:(4,-1)\qquad \text{Focus}:\bigg(4,-\dfrac{9}{8}\bigg)\qquad \text{Directrix}:y=-\dfrac{7}{8}}[/tex]
[tex]\bold{2.\quad \text{Vertex}:(2,1)\qquad \text{Focus}:\bigg(\dfrac{9}{4},1\bigg)\qquad \text{Directrix}:y=\dfrac{7}{4}}[/tex]
Step-by-step explanation:
The vertex form of a parabola is y = a(x - h)² + k or x = a(y - k)² + h
- (h, k) is the vertex
- p is the distance from the vertex to the focus
- -p is the distance from the vertex to the directrix
[tex]\bullet\quad a=\dfrac{1}{4p}[/tex]
1) y = -2(x - 4)² - 1 → a = -2 (h, k) = (4, -1)
[tex]a=\dfrac{1}{4p}\quad \rightarrow \quad -2=\dfrac{1}{4p}\quad \rightarrow \quad p=-\dfrac{1}{8}\\\\\text{Focus = Vertex + p}\\\\.\qquad = \dfrac{-8}{8}+\dfrac{-1}{8}\\\\.\qquad =-\dfrac{9}{8}\qquad \rightarrow \qquad \text{Focus}=\bigg(4,-\dfrac{9}{8}\bigg)\\\\\\\text{Directrix: y=Vertex - p}\\\\.\qquad \qquad y=\dfrac{-8}{8}-\dfrac{-1}{8}\\\\.\qquad \qquad y=-\dfrac{7}{8}[/tex]
*******************************************************************************************
2) x = (y - 1)² + 2 → a = 1 (h, k) = (2, 1)
[tex]a=\dfrac{1}{4p}\quad \rightarrow \quad 1=\dfrac{1}{4p}\quad \rightarrow \quad p=-\dfrac{1}{4}\\\\\text{Focus = Vertex + p}\\\\.\qquad = \dfrac{8}{4}+\dfrac{1}{4}\\\\.\qquad =\dfrac{9}{4}\qquad \rightarrow \qquad \text{Focus}=\bigg(\dfrac{9}{4},1\bigg)\\\\\\\text{Directrix: x=Vertex - p}\\\\.\qquad \qquad x=\dfrac{8}{4}-\dfrac{1}{4}\\\\.\qquad \qquad x=\dfrac{7}{4}[/tex]

