Respuesta :
Answer: [tex]\bold{1.\quad \text{Vertex}}:(-3,-6)\qquad \text{Focus}:\bigg(-3,-\dfrac{17}{4}\bigg)\qquad \text{Directrix}:y=-\dfrac{19}{4}[/tex]
2. Vertex: (-5, 4) Focus: (-6, 4) Directrix: x = -4
Step-by-step explanation:
The vertex form of a parabola is y = a(x - h)² + k or x = a(y - k)² + h
- (h, k) is the vertex
- p is the distance from the vertex to the focus
- -p is the distance from the vertex to the directrix
[tex]\bullet \quad a=\dfrac{1}{4p}[/tex]
1) y = (x + 3)² - 6 → a = 1 (h, k) = (-3, -6)
[tex]a=\dfrac{1}{4p}\qquad \rightarrow \qquad 1=\dfrac{1}{4p} \qquad \rightarrow \qquad p=\dfrac{1}{4}\\\\\text{Focus = Vertex + p}\\\\.\qquad =\dfrac{-18}{4}+\dfrac{1}{4}\\\\.\qquad = -\dfrac{17}{4}\qquad \rightarrow \qquad \text{Focus}=\bigg(-3,-\dfrac{17}{4}\bigg)\\\\\\\text{Directrix: y = Vertex - p}\\\\.\qquad \quad y=\dfrac{-18}{4}-\dfrac{1}{4}\\\\.\qquad \quad y= -\dfrac{19}{4}[/tex]
****************************************************************************************
[tex]2.\quad x=-\dfrac{1}{4}(y-4)^2-5\qquad \rightarrow \quad a=\dfrac{1}{4}\qquad (h, k)=(-5,4)[/tex]
[tex]a=\dfrac{1}{4p}\qquad \rightarrow \qquad -\dfrac{1}{4}=\dfrac{1}{4p} \qquad \rightarrow \qquad p=-1\\\\\text{Focus = Vertex + p}\\\\.\qquad =-5+\ -1\\\\.\qquad = -6\qquad \rightarrow \qquad \text{Focus}=(-6,4)\\\\\\\text{Directrix: y = Vertex - p}\\\\.\qquad \quad y=-5+\ -1\\\\.\qquad \quad y= -4[/tex]

