Respuesta :
Answer: [tex]\bold{1.\quad \text{Vertex}=(-1,5)\qquad \text{Focus}=\bigg(-\dfrac{3}{2},5\bigg)\qquad \text{Directrix}:x=-\dfrac{1}{2}}[/tex]
[tex]\bold{2.\quad \text{Vertex}=(-4,-1)\quad \text{Focus}=\bigg(-4,-\dfrac{1}{4}\bigg)\qquad \text{Directrix}:y=-\dfrac{7}{4}}[/tex]
Step-by-step explanation:
The vertex form of a parabola is x = a(y - k)² + h or y = a(x - h)² + k
- (h, k) is the vertex
[tex]\bullet\quad a=\dfrac{1}{4p}[/tex]
- p is the distance from the vertex to the focus
- -p is the distance from the vertex to the directrix
1)
[tex]x=-\dfrac{1}{2}(y-5)^2-1\qquad \rightarrow \qquad a=-\dfrac{1}{2}\quad (h,k)=(-1,5)\\\\a=\dfrac{1}{4p}\qquad \rightarrow \quad -\dfrac{1}{2}=\dfrac{1}{4p}\qquad \rightarrow \quad-2=4p\qquad \rightarrow \quad-\dfrac{1}{2}=p\\\\\\\text{Focus = Vertex + p}\\\\.\qquad =\dfrac{-2}{2}+\dfrac{-1}{2}\\\\.\qquad =-\dfrac{3}{2}\qquad \rightarrow \qquad \text{Focus}=\bigg(-\dfrac{3}{2},5\bigg)\\[/tex]
[tex]\text{Directrix: x = Vertex - p}\\\\.\qquad \qquad x=\dfrac{-2}{2}-\dfrac{-1}{2}\\\\.\qquad \qquad x=-\dfrac{1}{2}[/tex]
***********************************************************************************
2)
[tex]y=\dfrac{1}{3}(x+4)^2-1\qquad \rightarrow \qquad a=\dfrac{1}{}\quad (h,k)=(-4,-1)\\\\a=\dfrac{1}{4p}\qquad \rightarrow \quad \dfrac{1}{3}=\dfrac{1}{4p}\qquad \rightarrow \quad3=4p\qquad \rightarrow \quad\dfrac{3}{4}=p\\\\\\\text{Focus = Vertex + p}\\\\.\qquad =\dfrac{-4}{4}+\dfrac{3}{4}\\\\.\qquad =-\dfrac{1}{4}\qquad \rightarrow \qquad \text{Focus}=\bigg(-4,-\dfrac{1}{4}\bigg)\\[/tex]
[tex]\text{Directrix: y = Vertex - p}\\\\.\qquad \qquad y=\dfrac{-4}{4}-\dfrac{3}{4}\\\\.\qquad \qquad y=-\dfrac{7}{4}[/tex]

