Respuesta :

Answer: 1) Vertex: (6, -2)    Focus: (6, -7/4)     Directrix: y = -9/4

              2) Vertex: (-2, -1)   Focus: (-7/4, -1)     Directrix: x = -9/4

Step-by-step explanation:

Rewrite the equation in vertex format y = a(x - h)² + k   or   x = a(y - k)² + h by completing the square. Divide the b-value by 2 and square it - add that value to both sides of the equation.

  • (h, k) is the vertex
  • p is the distance from the vertex to the focus
  • -p is the distance from the vertex to the directrix

    [tex]\bullet\quad a=\dfrac{1}{4p}[/tex]

1) y = x² - 12x + 34

[tex]y-34=x^2-12x\\\\y-34+\bigg(\dfrac{-12}{2}\bigg)^2=x^2-12x+\bigg(\dfrac{-12}{2}\bigg)^2\\\\\\y-34+36=(x-6)^2\\\\y+2=(x-6)^2\\\\y=(x-6)^2-2\qquad \rightarrow \qquad a=1\quad (h,k)=(6,-2)\\[/tex]

[tex]a=\dfrac{1}{4p}\quad \rightarrow \quad 1=\dfrac{1}{4p}\quad \rightarrow \quad p=\dfrac{1}{4}\\\\\\\text{Focus = Vertex + p}\\.\qquad \quad =\dfrac{-8}{4}+\dfrac{1}{4}\\\\.\qquad \quad =-\dfrac{7}{4}\quad \rightarrow \quad\text{Focus}=\bigg(6,-\dfrac{7}{4}\bigg)\\\\\\\text{Directrix: y= Vertex - p}\\.\qquad \qquad y=\dfrac{-8}{4}-\dfrac{1}{4}\\\\.\qquad \qquad y=-\dfrac{9}{4}[/tex]

*******************************************************************************************

2) x = y² + 2y - 1

[tex]x+1=y^2+2y\\\\x+1+\bigg(\dfrac{2}{2}\bigg)^2=y^2+2y+\bigg(\dfrac{2}{2}\bigg)^2\\\\\\x+1+1=(y+1)^2\\\\x+2=(y+1)^2\\\\x=(y+1)^2-2\qquad \rightarrow \qquad a=1\quad (h,k)=(-2,-1)\\[/tex]

[tex]a=\dfrac{1}{4p}\quad \rightarrow \quad 1=\dfrac{1}{4p}\quad \rightarrow \quad p=\dfrac{1}{4}\\\\\\\text{Focus = Vertex + p}\\.\qquad \quad =\dfrac{-8}{4}+\dfrac{1}{4}\\\\.\qquad \quad =-\dfrac{7}{4}\quad \rightarrow \quad\text{Focus}=\bigg(-\dfrac{7}{4},-1\bigg)\\\\\\\text{Directrix: x= Vertex - p}\\.\qquad \qquad y=\dfrac{-8}{4}-\dfrac{1}{4}\\\\.\qquad \qquad x=-\dfrac{9}{4}[/tex]

Ver imagen tramserran
Ver imagen tramserran