Part 3: Use the information provided to write the vertex formula of each parabola. Please show the work


1. Vertex: (-4, -3), Directrix: y = -25/8


2. Vertex: (-8, -7), Directrix: y= -25/4


3. Focus: (7, 1/2), Directrix: y = 3/2

Respuesta :

Answer: 1. y = 2(x + 4)² - 3

              [tex]\bold{2.\quad y=-\dfrac{1}{3}(x+8)^2-7}[/tex]

              [tex]\bold{3.\quad y=-\dfrac{1}{2}(x-7)^2+1}[/tex]

Step-by-step explanation:

Notes: The vertex form of a parabola is y = a(x - h)² + k

  • (h, k) is the vertex
  • p is the distance from the vertex to the focus  

    [tex]\bullet\quad a=\dfrac{1}{4p}[/tex]

1)

[tex]\text{Vertex}=(-4,-3)\qquad \text{Directrix}:y=-\dfrac{25}{8}\\\\\text{Given}:(h, k)=(-4, 3)\\\\p=\dfrac{-24}{8}-\dfrac{-25}{8}=\dfrac{1}{8}\\\\\\a=\dfrac{1}{4p}=\dfrac{1}{4(\frac{1}{8})}=\dfrac{1}{\frac{1}{2}}=2[/tex]

Now input a = 2  and  (h, k) = (-4, -3) into the equation y = a(x - h)² + k

y = 2(x + 4)² - 3

******************************************************************************************

2)

[tex]\text{Vertex}=(-8,-7)\qquad \text{Directrix}:y=-\dfrac{-25}{4}\\\\\text{Given}:(h, k)=(-8, -7)\\\\p=\dfrac{-28}{4}-\dfrac{-25}{4}=\dfrac{-3}{4}}\\\\\\a=\dfrac{1}{4p}=\dfrac{1}{4(\frac{-3}{4})}=\dfrac{1}{-3}=-\dfrac{1}{3}[/tex]

Now input a = -1/3  and  (h, k) = (-8, -7) into the equation y = a(x - h)² + k

[tex]\bold{y=-\dfrac{1}{3}(x+8)^2-7}[/tex]

******************************************************************************************

3)

[tex]\text{Focus}=\bigg(7,\dfrac{1}{2}\bigg)\qquad \text{Directrix}:y=\dfrac{3}{2}[/tex]

The midpoint of the focus and directrix is the y-coordinate of the vertex:

[tex]\dfrac{focus+directrix}{2}=\dfrac{\frac{1}{2}+\frac{3}{2}}{2}=\dfrac{\frac{4}{2}}{2}=\dfrac{2}{2}=1[/tex]

The x-coordinate of the vertex is given in the focus as 7

(h, k) = (7, 1)

Now let's find the a-value:

[tex]p=\dfrac{2}{2}-\dfrac{3}{2}=\dfrac{-1}{2}}\\\\\\a=\dfrac{1}{4p}=\dfrac{1}{4(\frac{-1}{2})}=\dfrac{1}{-2}=-\dfrac{1}{2}[/tex]

Now input a = -1/2  and  (h, k) = (7, 1) into the equation y = a(x - h)² + k

[tex]\bold{y=-\dfrac{1}{2}(x-7)^2+1}[/tex]