Part 4: Use the information provided to write the vertex formula of each parabola.

1. Focus: (-31/4, 2), Directrix: x = -33/4

2. Focus: (1/2, 10), Directrix: x = 3/2

3. Focus: (-9, 57/8), Directrix: y= 55/8

Respuesta :

Answer:  1. x = (y - 2)² + 8

              [tex]\bold{2.\quad x=-\dfrac{1}{2}(y-10)^2}+1[/tex]

               3. y = 2(x +9)² + 7

Step-by-step explanation:

Notes: Vertex form is: y =a(x - h)² + k    or      x =a(y - k)² + h

  • (h, k) is the vertex
  • point of vertex is midpoint of focus and directrix:   [tex]\dfrac{focus+directrix}{2}[/tex]

     [tex]\bullet\quad a=\dfrac{1}{4p}[/tex]

  • p is the distance from the vertex to the focus

1)

[tex]focus = \bigg(\dfrac{-31}{4},2\bigg)\qquad directrix: x=\dfrac{-33}{4}\\\\\text{Since directrix is x, then the x-value of the vertex is:}\\\\\dfrac{focus+directrix}{2}=\dfrac{\frac{-31}{4}+\frac{-33}{4}}{2}=\dfrac{\frac{-64}{4}}{2}=\dfrac{-16}{2}=-8\\\\\text{The y-value of the vertex is given by the focus as: 2}\\\\\text{vertex (h, k)}=(-8,2)[/tex]

Now let's find the a-value:

[tex]p=focus-vertex\\\\p=\dfrac{-31}{4}-\dfrac{-32}{4}=\dfrac{1}{4}\\\\\\a=\dfrac{1}{4p}=\dfrac{1}{4(\frac{1}{4})}=\dfrac{1}{1}=1[/tex]

Now, plug in a = 1   and    (h, k) = (-8, 2) into the equation x =a(y - k)² + h

x = (y - 2)² + 8

***************************************************************************************

2)

[tex]focus = \bigg(\dfrac{1}{2},10\bigg)\qquad directrix: x=\dfrac{3}{2}\\\\\text{Since directrix is x, then the x-value of the vertex is:}\\\\\dfrac{focus+directrix}{2}=\dfrac{\frac{1}{2}+\frac{3}{2}}{2}=\dfrac{\frac{4}{2}}{2}=\dfrac{2}{2}=1\\\\\text{The y-value of the vertex is given by the focus as: 10}\\\\\text{vertex (h, k)}=(1,10)[/tex]

Now let's find the a-value:

[tex]p=focus-vertex\\\\p=\dfrac{1}{2}-\dfrac{2}{2}=\dfrac{-1}{2}\\\\\\a=\dfrac{1}{4p}=\dfrac{1}{4(\frac{-1}{2})}=\dfrac{1}{-2}=-\dfrac{1}{2}[/tex]

Now, plug in a = -1/2   and    (h, k) = (1, 10) into the equation x =a(y - k)² + h

[tex]\bold{x=-\dfrac{1}{2}(y-10)^2}+1[/tex]

***************************************************************************************

3)

[tex]focus = \bigg(-9,\dfrac{57}{8}\bigg)\qquad directrix: y=\dfrac{55}{8}\\\\\text{Since directrix is y, then the y-value of the vertex is:}\\\\\dfrac{focus+directrix}{2}=\dfrac{\frac{57}{8}+\frac{55}{8}}{2}=\dfrac{\frac{112}{8}}{2}=\dfrac{14}{2}=7\\\\\text{The x-value of the vertex is given by the focus as: -9}\\\\\text{vertex (h, k)}=(-9,7)[/tex]

Now let's find the a-value:

[tex]p=focus-vertex\\\\p=\dfrac{57}{8}-\dfrac{56}{8}=\dfrac{1}{8}\\\\\\a=\dfrac{1}{4p}=\dfrac{1}{4(\frac{1}{8})}=\dfrac{1}{\frac{1}{2}}=2[/tex]

Now, plug in a = 2   and    (h, k) = (-9, 7) into the equation y =a(x - h)² + k

y = 2(x +9)² + 7