Respuesta :

Answer:

39°

Step-by-step explanation:

Since, angle formed on the circumference of the circle is half of the angle formed at the centre of the circle.

[tex]\therefore m\angle BAC = \frac{1}{2} \times m\angle BZC\\\\

\therefore m\angle BAC = \frac{1}{2} \times 78°\\\\

\therefore m\angle BAC = 39°\\\\

\because In\: \square ABCD, \: AB ||DC... (Given) \\\\

\therefore \angle DCA \cong \angle BAC.. (Alternate\: \angle 's) \\\\

\therefore m\angle DCA=m \angle BAC\\\\

\huge \purple {\boxed {\therefore m\angle DCA=39°}} [/tex]