2. A square-based tent has the cross-sectional
shape shown. The side wall goes up at
an angle of elevation of 60° for 2 m, then
continues at an angle of elevation of 30°
for another 2 m to the peak.
a) Determine an exact value for the height
of the tent.
b) Determine an exact value for the side
length of the base.
C) Determine an exact value for the length
of one of the diagonals of the base.
2 m
130°
2 m
Z60°

Respuesta :

(a) Length of the height is 2.732 m

(b) Length of the base is 5.466 m

Explanation:

An image is attached for reference.

(a)

In ΔAOB,

[tex]sin 30^o = \frac{AO}{AB} \\\\0.5 = \frac{AO}{2} \\\\AO = 1 m[/tex]

In ΔBGD,

[tex]sin 60^o = \frac{BG}{BD} \\\\0.866 = \frac{BG}{2} \\\\BG = 1.732 m[/tex]

According to the figure, BG = OE = 1.732 m

Height of the tent, AE = AO + OE

                                  = 1 m + 1.732 m

                                  = 2.732 m

(b)

DF = ?

In ΔAOB,

[tex]tan 30^o = \frac{AO}{OB} \\\\0.577 = \frac{1}{OB} \\\\OB = 1.733 m\\\\\\[/tex]

According to the figure, OB = GE = 1.733 m

In ΔBGD,

[tex]tan 60^o = \frac{BG}{DG} \\\\1.732 = \frac{1.732}{DG}\\ \\DG = 1m[/tex]

According to the figure, DE = DG + GE

                                      DE = 1 m + 1.733 m

                                     DE = 2.733 m

Length of the base, DF = 2 X DE

                              DF = 2 X 2.733 m

                               DF = 5.466 m

Ver imagen thamimspartan
Ver imagen thamimspartan