Respuesta :

Answer:

vertex (plus or minus 1/2,0) Foci (+- sqt37/2,0) asympt +- 6x

Step-by-step explanation:

The vertices are  (±1/2, 0), the asymptote is y = -6x, and the foci of the hyperbola is [tex](\±\frac{\sqrt{37}}{2}, 0)[/tex]

How to determine the vertices, asymptotes, and the foci?

The equation of the hyperbola is given as:

576x^2 - 16y^2 = 144

Divide through by 144

[tex]4x^2 - \frac{y^2}{9} = 1[/tex]

Rewrite as:

[tex]\frac{x^2}{1/4} - \frac{y^2}{9} = 1[/tex]

Express as squares

[tex]\frac{x^2}{1/2^2} - \frac{y^2}{3^2} = 1[/tex]

The equation of a hyperbola is:

[tex]\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1[/tex]

So, we have:

a = 1/2 and b = 3

Calculate c using:

c = √(a² + b²)

So, we have:

c = √(1/4 + 9)

Evaluate the sum

[tex]c = \sqrt{\frac{37}{4}}[/tex]

[tex]c = \frac{\sqrt{37}}2[/tex]

The coordinates of the vertices is:

Vertices = (±a, 0)

So, we have:

Vertices = (±1/2, 0)

The coordinates of the foci are:

Foci = (±c, 0)

So, we have:

[tex]Foci = (\±\frac{\sqrt{37}}{2}, 0)[/tex]

The asymptote of the hyperbola is:

[tex]y =- \frac{b}{a} *x[/tex]

This gives

[tex]y = -\frac{3}{1/2} *x[/tex]

Evaluate

y = -6x

Hence, the vertices are  (±1/2, 0), the asymptote is y = -6x, and the foci of the hyperbola is [tex](\±\frac{\sqrt{37}}{2}, 0)[/tex]

Read more about hyperbola at:

https://brainly.com/question/2364331