What is the equation for the hyperbola shown?

x^2/60^2-y^2/11^2=1

x^2/11^2-y^2/60^2=1

y^2/60^2-x^2/11^2=1

y^2/11^2-x^2/60^2=1

What is the equation for the hyperbola shown x2602y21121 x2112y26021 y2602x21121 y2112x26021 class=

Respuesta :

Answer:

The answer to your question is    [tex]\frac{x^{2}}{60^{2}} - \frac{y^{2}}{11^{2}} = 1[/tex]

Step-by-step explanation:

Data

From the graph

Horizontal hyperbola

Center (0, 0)

a = 60     a is the distance from the Center to the Vertex

b = 11       b is the distance from the Center to the endpoint of the conjugate

               axis.

The Equation for a horizontal hyperbola

                [tex]\frac{(x- h)^{2} }{a^{2}} - \frac{(y - k)^{2}}{b^{2}} = 1[/tex]

h = 0, k = 0

-Substitution

                [tex]\frac{x^{2}}{60^{2}} - \frac{y^{2}}{11^{2}} = 1[/tex]

Answer:

Option 1

Step-by-step explanation:

(x - 0)²/60² - (y - 0)²/11² = 1

x²/60² - y²/11² = 1