Respuesta :

Answer:

The solutions on the given interval are :

[tex]0[/tex]

[tex]\pi[/tex]

[tex]\cos^{-1}(\frac{1}{4})[/tex]

[tex]-\cos^{-1}(\frac{1}{4})+2\pi[/tex]

Step-by-step explanation:

We will need the double angle identity [tex]\sin(2x)=2\sin(x)\cos(x)[/tex].

Let's begin:

[tex]2\sin(2x)=\sin(x)[/tex]

Use double angle identity mentioned on left hand side:

[tex]2\cdot 2\sin(x)\cos(x)=\sin(x)[/tex]

Simplify a little bit on left side:

[tex]4\sin(x)\cos(x)=\sin(x)[/tex]

Subtract [tex]\sin(x)[/tex] on both sides:

[tex]4\sin(x)\cos(x)-\sin(x)=0[/tex]

Factor left hand side:

[tex]\sin(x)[4\cos(x)-1]=0[/tex]

Set both factors equal to 0 because at least of them has to be 0 in order for the equation to be true:

[tex]\sin(x)=0 \text{ or } 4\cos(x)-1=0[/tex]

The first is easy what angles [tex]\theta[/tex] are [tex]y[/tex]-coordinates on the unit circle 0. That happens at [tex]0[/tex] and [tex]\pi[/tex] on the given range of [tex]x[/tex] (this [tex]x[/tex] is not be confused with the [tex]x[/tex]-coordinate).

Now let's look at the second equation:

[tex]4\cos(x)-1=0[/tex]

Isolate [tex]\cos(x)[/tex].

Add 1 on both sides:

[tex]4 \cos(x)=1[/tex]

Divide both sides by 4:

[tex]\cos(x)=\frac{1}{4}[/tex]

This is not as easy as finding on the unit circle.

We know [tex]\arccos( )[/tex] will render us a value between [tex]0[/tex] and [tex]2\pi[/tex].

So one solution on the given interval for x is [tex]x=\cos^{-1}(\frac{1}{4})[/tex].

We know cosine function is even.

So an equivalent equation is:

[tex]\cos(-x)=\frac{1}{4}[/tex]

Apply [tex]\cos^{-1}[/tex] to both sides:

[tex]-x=\cos^{-1}(\frac{1}{4})[/tex]

Multiply both sides by -1:

[tex]x=-\cos^{-1}(\frac{1}{4})[/tex]

This going to be negative in the 4th quadrant but if we wrap around the unit circle, [tex]2\pi[/tex] , we will get an answer between [tex]0[/tex] and [tex]2\pi[/tex].

So the solutions on the given interval are :

[tex]0[/tex]

[tex]\pi[/tex]

[tex]\cos^{-1}(\frac{1}{4})[/tex]

[tex]-\cos^{-1}(\frac{1}{4})+2\pi[/tex]