A circle is shown. Chords Q S and R T intersect at point A. The length of Q A is 9, the length of A S is 4 x, the length of T A is 12, and the length of A R is x + 2.
What is the length of the shorter of the two chords shown?

13 units
16 units
18 units
19 units

Respuesta :

The shorter length of the chord(QS) is 13 units, if the chords Q S and R T intersect at point A and the length of Q A is 9, the length of A S is 4 x, the length of T A is 12, and the length of A R is x + 2.

Step-by-step explanation:

The given is,

         Chords Q S and R T intersect at point A

         The length of Q A is 9

         The length of A S is 4 x

         The length of T A is 12

         The length of A R is x + 2

         For the above question diagram is missing, so i attach the diagram.

Step:1

        From the Chord theorem,

        It states that the products of the lengths of the line segments on each chord are equal.

       Chords theorem for the given diagram (Ref attachment),

                    (QA × AS) = (TA × AR)........................(1)

       From the given values equation (1) becomes,

                         (9 × 4x) = (12 × (x+2))

                               36x = 12x + 24

                       36x - 12x = 24

                                24x = 24

                                    x = 1

       From the x values, chord lenths are

       For the QS,

                      QS = QA + QS

                            = 9 + 4x

                            = 9 + 4(1)

                     QS = 13 units

      For the RT,

                      RT = RA + TA

                           = (x+2) + 12

                           = (1+2) + 12

                           = 3 +12

                      RT = 15 units

Result:

          The shorter length of the chord(QS) is 13 units.    

Ver imagen monica789412

Answer:

A

Step-by-step explanation:

just took the test on edg