Respuesta :
Answer:
If [tex]y=(x-2)^2+4[/tex] is the transformed function, then the parent function [tex]y=x^2[/tex] has been shifted up vertically by 4 units and horizontally right by 2 units
Step-by-step explanation:
Assume the function is [tex]y=f(x)[/tex] is the parent function.
A vertical shift,b units up will transform the function to [tex]y=f(x)+b[/tex] .
A horizontal shift [tex]a[/tex] units.
[tex]y=f(x-a)+b[/tex]
For instance, if [tex]y=x^2[/tex], b=4, and a=2 units.
Then the transformed function becomes:
[tex]y=(x-2)^2+4[/tex]
Answer:
Vertical shift is 1 unit up
Step-by-step explanation:
Horizontal shift is pi/4 units right
The period is pi/2