Respuesta :

Given:

Given that the radius of the cone is 3 units.

The volume of the cone is 57 cubic units.

We need to determine the height of the cone.

Height of the cone:

The height of the cone can be determined using the formula,

[tex]V=\frac{1}{3} \pi r^2 h[/tex]

Substituting the values, r = 3 and V = 57, we get;

[tex]57=\frac{1}{3} (3.14) (3)^2 h[/tex]

Simplifying the terms, we get;

[tex]57=\frac{1}{3} (3.14) (9) h[/tex]

Multiplying both sides of the equation by 3, we get;

[tex]171= (3.14) (9) h[/tex]

[tex]171=28.26 h[/tex]

Dividing both sides of the equation by 28.26, we get;

[tex]6.05=h[/tex]

Thus, the height of the cone is 6.05 units.