Circle L is shown. Line segments K L and M L are radii. The length of K L is 9. Angle M L K is 120 degrees. Sector M L K with a 120 degree angle is shaded.

What is the area of the shaded sector of the circle?

9Pi units squared
27Pi units squared
81Pi units squared
162Pi units squared

Respuesta :

The area of the shaded sector of the circle is 27[tex]\pi[/tex] units squared, if the line segments KL and ML are radii, the length of KL is 9 units and MLK is 120 degrees.

Step-by-step explanation:

The given is,

                 K L and M L are radii

                 Length of K L is 9

                 Angle M L K is 120 degrees

    In the given question diagram is missing, so we attach the diagram.

Step:1

              The shaded area of sector in the circle is [tex]\frac{1}{3}[/tex] of circle area.

                             ( Three times of 120° equal to 360°)

              Formula for area of circle,

                                           [tex]A = \pi r^{2}[/tex].........................................(1)

               From the ratio and area of circle formula for shaded sector is,

                                        [tex]A_{Shaded sector} =\frac{ \pi r^{2} }{3}[/tex].........................(2)

              Where, r - radius of circle

              From the given,

                              r = 9 units

              Equation (2) becomes,

                                       [tex]A_{Shaded sector} =\frac{ \pi( 9)^{2} }{3}[/tex]

                                                            [tex]=\frac{ \pi 81}{3}[/tex]

                                                            = 27[tex]\pi[/tex]

                                       [tex]A_{Shaded sector} =27 \pi[/tex] Units squared

Result:

             The area of the shaded sector of the circle is 27[tex]\pi[/tex] units squared, if the line segments KL and ML are radii, the length of KL is 9 units and MLK is 120 degrees.  

Ver imagen monica789412

Answer:

.27 pi

Step-by-step explanation: