Water is supplied at 150 ft3/s and 60 psi to a hydraulic turbine through a 3-ft inside-diameter inlet pipe as indicated in Fig. 4. The turbine discharge pipe has a 4-ft inside diameter. The static pressure at section (2), 10 ft below the turbine inlet, is 10-in. Hg vacuum. If the turbine develops 2500 hp, determine the power lost between sections (1) and (2).

Respuesta :

Complete Question

The complete question is shown on the first  uploaded image

Answer:

The power loss between section (1) and section (2) is [tex]p_{(loss)} = 185626 \ ft \cdot lb/s[/tex]

Explanation:

The velocity at the first section is mathematically represented as

                 [tex]v_1 = \frac{Q}{a_1}[/tex]

Where Q is the flow rate given as  [tex]150ft^3/s[/tex] and [tex]a_1[/tex] is the area at  first section which is evaluated as

                   [tex]a_1 = \pi d_1 ^2[/tex]

The value of diameter [tex]d_1[/tex] is = 3 ft

So  

                   [tex]a_1 = \pi 3^2 = 28.278 ft^2[/tex]

Now   [tex]v_1 = \frac{150}{28,278}[/tex]

              [tex]= 21.2 \ ft/s[/tex]

The continuity equation for first and second section is mathematically represented as

                [tex]a_1v_1 = a_1 v_2[/tex]

               [tex]\frac{\pi}{4}d_1^2 v_1 = \frac{\pi}{4} d_2^2 v_2[/tex]

               [tex]v_2 = [\frac{d_1}{d_2} ]^2 v_1[/tex]

From the question [tex]d_2 = 4 \ ft[/tex]

Therefore  [tex]v_2 = [\frac{3}{4}]^2 * 21.23[/tex]

                      [tex]= 11.94 \ ft/s[/tex]

Generally balanced energy equation between first and second section is mathematically represented as

          [tex]-[\frac{dp}{\rho} + d[\frac{v^2}{2} ]+ gdz ] = \delta w_{sn} - \delta w_{(loss)}[/tex]

Now this to obtain the energy equation for the between the start (point 1)and end(point 2) points

          [tex]-[\int\limits^2_1 {\frac{dp}{\rho} } \, + \int\limits^2_1 {d[\frac{v^2}{2} } \, ] + \int\limits^2_1 gdz \, ] = \int\limits^2_1 {\delta w_{sn}} \, -\int\limits^2_1 {\delta w _{(loss)}} \,[/tex]

        [tex]- [\frac{p_2 -p_1}{\rho} + \frac{v^2_2 -v^2_1}{2} + g(z_2 -z_1) ] = w_{(sn)} -w_{(loss)}[/tex]

           [tex]\frac{p_2 -p_1}{\rho} + \frac{v^2_2 -v^2_1}{2} + g(z_2 -z_1) ] = w_{(sn)}-w_{(loss)} } ---(1)[/tex]

The negative sign is to show that energy is transferred from the turbine

Where

          [tex]v_1 , z_1 , p_1[/tex] are the velocity , height , pressure of the datum at first section  

          [tex]v_2 , p_2 , z_2[/tex] are the velocity  , height , pressure of the datum at second section

           [tex]\rho[/tex] is the density of water with value of [tex]1.94\ slugs /ft^3[/tex]

           [tex]\delta w_{(loss)}[/tex] is the loss of workdone

           g is the acceleration due to gravity with a value of  32.3 ft/[tex]s^2[/tex]

Given that [tex]p_1 = 60psi = 60 \frac{lb}{in^2} = 60 \frac{(12 in)^2}{1 ft} * \frac{lb}{in^2} = 8640\ lb/ft^2[/tex]

                [tex]p_2 = -10 \ in \ of \ Hg = - 10 * \frac{70.726 \ lb/ft^2}{1 \ in \ of \ Hg} * in \ of \ Hg = -707.26 lb/ft^2[/tex]

The negative sign is to show that the pressure is acting against the pressure of the system

We are also told that  the power developed by the turbine is

               [tex]p_{(sn)} = -2500 \ hp * \frac{550 \ ft \cdot lb/s}{1 \ hp} = -1375000ft \cdot lb/s[/tex]

The negative sign show that power is transferred from the turbine

When we multiply the equation 1 above by the mass flow rate [tex]\r m[/tex] we get

           [tex]\r m[\frac{p_2 -p_1}{\rho} + \frac{v^2_2 -v^2_1}{2} + g(z_2 -z_1) ] = \r m [ w_{(sn)}-w_{(loss)} ][/tex]

          [tex]\r m[\frac{p_2 -p_1}{\rho} + \frac{v^2_2 -v^2_1}{2} + g(z_2 -z_1) ] = \r m [ p_{(sn)}-p_{(loss)}] ----(2)[/tex]

The mass flow rate is mathematically represented as

                    [tex]\r m = \rho Q[/tex]

                       [tex]= 1.94 * 150[/tex]

                       [tex]= 291 \ slugs/s[/tex]

The height  [tex]z_1 = 0ft \ and \ z_2= 10 ft[/tex]

  Substituting values into equation 2

       [tex][291 [\frac{-707.26-8640}{1.94} + \frac{11.94^2 -21.23^2}{2} + 32.2 * (0-10)]] = -1375000 - p_{(loss)}[/tex]

       [tex]-1540626 = - 1375000 -p_{(loss)}[/tex]

            [tex]p_{(loss)} = 185626 \ ft \cdot lb/s[/tex]

Ver imagen okpalawalter8