contestada

Lee las situaciones y realiza lo siguiente con cada una:

Escribe las magnitudes intervienen
Escribe cuál magnitud es la variable independiente y cuál la variable dependiente
Representa la función que describe la situación

SITUACIONES:

Una máquina imprime 840 páginas cada 30 minutos.
Un ascensor tarda 6 segundos para subir dos pisos.
Una empresa alquila un auto a S/ 480 por 12 días.
10 kilogramos de papaya cuesta S/ 35.

Respuesta :

Answer:

Part 1) see the explanation

Part 2) see the explanation

Part 3) see the explanation

Part 4) see the explanation

Step-by-step explanation:

The question in English is

Read the situations and do the following with each one:

Write down the magnitudes involved

Write which magnitude is the independent variable and which is the dependent variable

It represents the function that describes the situation

SITUATIONS:

1) A machine prints 840 pages every 30 minutes.

2) An elevator takes 6 seconds to go up two floors.

3) A company rents a car at S/ 480 for 12 days.

4) 10 kilograms of papaya cost S/ 35

Part 1) we have

A machine prints 840 pages every 30 minutes

Let

x ----> the time in minutes (represent the variable independent or input value)

y ---> the number of pages that the machine print (represent the dependent variable or output value)

Remember that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]

In this problem

we have a a proportional variation

so

The value of the constant of proportionality is equal to

 [tex]k=\frac{y}{x}[/tex]

we have

[tex]y=840\ pages\\x=30\ minutes[/tex]

substitute

 [tex]k=\frac{840}{30}=28\ pages/minute[/tex]

The linear equation is

[tex]y=28x[/tex]

Part 2) we have

An elevator takes 6 seconds to go up two floors.

Let

x ----> the time in seconds (represent the variable independent or input value)

y ---> the number of floors (represent the dependent variable or output value)

Remember that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]

In this problem

we have a a proportional variation

so

The value of the constant of proportionality is equal to

 [tex]k=\frac{y}{x}[/tex]

we have

[tex]y=2\ floors\\x=6\ seconds[/tex]

substitute

 [tex]k=\frac{2}{6}=\frac{1}{3}\ floors/second[/tex]

The linear equation is

[tex]y=\frac{1}{3}x[/tex]

Part 3) we have

A company rents a car at S/ 480 for 12 days.

Let

x ----> the number of days (represent the variable independent or input value)

y ---> the cost of rent a car (represent the dependent variable or output value)

Remember that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]

In this problem

we have a a proportional variation

so

The value of the constant of proportionality is equal to

 [tex]k=\frac{y}{x}[/tex]

we have

[tex]y=\$480\\x=12\ days[/tex]

substitute

 [tex]k=\frac{480}{12}=\$40\ per\ day[/tex]

The linear equation is

[tex]y=40x[/tex]

Part 4) we have

10 kilograms of papaya cost S/ 35

Let

x ----> the kilograms of papaya (represent the variable independent or input value)

y ---> the cost  (represent the dependent variable or output value)

Remember that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]

In this problem

we have a a proportional variation

so

The value of the constant of proportionality is equal to

 [tex]k=\frac{y}{x}[/tex]

we have

[tex]y=\$35\\x=10\ kg[/tex]

substitute

 [tex]k=\frac{35}{10}=\$3.5\ per\ kg[/tex]

The linear equation is

[tex]y=3.5x[/tex]