Someone can help??

Answer:
Step-by-step explanation:
let cos^{-1}x=t
cos t=x
when x=1,cos t=1=cos 0
t \rightarrow 0
[tex]\lim_{x \to 1} \frac{1-\sqrt{x}}{(cos ^{-1}x)^2 } \\= \lim_{t \to 0} \frac{1-\sqrt{cos~t}}{t^2} \times \frac{1+\sqrt{cos~t}}{1+\sqrt{cos ~t}} \\= \lim_{t \to 0} \frac{1-cos~t}{t^2(1+\sqrt{cos~t})}} \\= \lim_{t \to 0 }\frac{2 sin^2~\frac{t}{2}}{t^2(1+\sqrt{cos~t})}} \\= 2\lim_{t \to 0 }(\frac{sin~t/2}{\frac{t}{2} })^2 \times \frac{1}{4} \times \lim_{t \to 0 }\frac{1}{1+\sqrt{cos~t}} \\=\frac{2}4} \times 1^2 \times \frac{1}{1+\sqrt{cos~0}} \\=\frac{1}{2} \times \frac{1}{1+1} \\=\frac{1}{4}[/tex]