Answer:
30[tex]\sqrt{11}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplifying 3[tex]\sqrt{50}[/tex]
= 3([tex]\sqrt{25(2)}[/tex] )
= 3(5[tex]\sqrt{2}[/tex] )
= 15[tex]\sqrt{2}[/tex]
Thus
3[tex]\sqrt{50}[/tex] × [tex]\sqrt{22}[/tex]
= 15[tex]\sqrt{2}[/tex] × [tex]\sqrt{22}[/tex]
= 15 × [tex]\sqrt{2(22)}[/tex]
= 15 × [tex]\sqrt{44}[/tex]
= 15 × [tex]\sqrt{4(11)}[/tex]
= 15 × 2[tex]\sqrt{11}[/tex]
= 30[tex]\sqrt{11}[/tex]