Respuesta :

Answer:

46 degrees C

Explanation:

We use Charles' Law: [tex]\frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex] , where V is the volume and T is the temperature in Kelvin.

Here, V_1 = 1.16 L and T_1 = 23 + 273 = 296 K. Also, V_2 = 1.25 L. Plugging these into the equation, we have:

[tex]\frac{1.16}{296} =\frac{1.25}{T_2}[/tex]

Cross-multiplying, we have:

1.16[tex]T_2[/tex] = 1.25 * 296 = 370  ⇒  [tex]T_2[/tex] = 370/1.16 ≈ 319 K

We want to convert this back to Celsius, so we just subtract 273 from 319:

319 - 273 = 46 degrees Celsius.

Hope this helps!