Respuesta :

Answer:

The function is f(x) =   [tex]\frac{3}{2}[/tex] x + [tex]\frac{9}{2}[/tex]  

Step-by-step explanation:

The point-slope form of a linear function is [tex]y-y_{1}=m(x - x_{1})[/tex] , where

  • m is the slope of the graph (rate of change)
  • ([tex]x_{1}[/tex] , [tex]y_{1}[/tex]) is a point on the line (the line passes through it)

∵ The function has a rate of change  [tex]\frac{3}{2}[/tex]

- The rate of change is the slope of the graph

∴ m =  [tex]\frac{3}{2}[/tex]

∵ The graph is passes through point (4 , 10.5)

∴ [tex]x_{1}[/tex] = 4 and [tex]y_{1}[/tex] = 10.5

Substitute m and the coordinates of the point in the form of the equation

∵ [tex]y-y_{1}=m(x - x_{1})[/tex]

∴ y - 10.5 = [tex]\frac{3}{2}[/tex] (x - 4)

Simplify the right hand side

∴ y - 10.5 =  [tex]\frac{3}{2}[/tex] (x) -  [tex]\frac{3}{2}[/tex] (4)

∴ y - 10.5 =  [tex]\frac{3}{2}[/tex] x - 6

Add 10.5 to both sides

∴ y =  [tex]\frac{3}{2}[/tex] x + 4.5

∵ 4.5 = [tex]\frac{9}{2}[/tex]

∴ y =  [tex]\frac{3}{2}[/tex] x + [tex]\frac{9}{2}[/tex]

∵ y = f(x)

∴ f(x) =  [tex]\frac{3}{2}[/tex] x + [tex]\frac{9}{2}[/tex]

The function is f(x) =   [tex]\frac{3}{2}[/tex] x + [tex]\frac{9}{2}[/tex]