iceson
contestada

a plane is flying 120 m above the ground at an angle of 30 degrees to the horizontal, when the pilot released 2 fuel tanks to decrease the planes load. How long did the tanks fall and with what speed did it hit the ground of the plane's speed was 84 m/s?

Respuesta :

Answer:

  • 2.26 seconds
  • 97m/s

Explanation:

1. Fall time

i) Find the vertical speed of the plane when the tanks were released

         [tex]V_{y,0}=84m/s\times sin(30\º)=42m/s[/tex]

That is the same initial vertical speed of the tanks.

ii) Find the fall time

         [tex]y-y_0=V_{y,0}\cdot t+g\cdot t^2/2[/tex]

         [tex]120=42t+4.9t^2[/tex]

         

         [tex]4.9t^2+42t-120=0[/tex]

         

        [tex]t=\dfrac{-42\pm\sqrt{(42)^2-4(4.9)(-120)}}{2\times 4.9}[/tex]

Only the positive value has aphysical meaning: t = 2.26 seconds.

2. Speed when they hit the ground

i) The horizontal speed is constant:

          [tex]V_x=84m/s\times cos(30\º)\approx72.5m/s[/tex]

ii) The vertical speed is:

            [tex]V_y=V_{y,0}+g\cdot t[/tex]

            [tex]V_y=42m/s+9.8m/s^2\cdot (2.26s)\approx64.1m/s[/tex]

iii) Total speed

          [tex]V=\sqrt{V_x^2+V_y^2}[/tex]

          [tex]V=\sqrt{(72.5m/s)^2+(64.1m/s)^2}\approx97m/s[/tex]