The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.585.58 millimeters and a standard deviation of 0.040.04 millimeters. Find the two diameters that separate the top 5%5% and the bottom 5%5%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary.

Respuesta :

Answer:

The two diameters that separate the top 5% and the bottom 5% are 5.51 and 5.65 respectively.

Step-by-step explanation:

We are given that the diameters of bolts produced in a machine shop are normally distributed with a mean of 5.58 millimeters and a standard deviation of 0.04 millimeters.

Let X = diameters of bolts produced in a machine shop

So, X ~ N([tex]\mu=5.58,\sigma^{2} =0.04^{2}[/tex])

The z score probability distribution is given by;

          Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

where, [tex]\mu[/tex] = mean diameter = 5.58 millimeter

            [tex]\sigma[/tex] = standard deviation = 0.04 millimeter

Now, we have to find the two diameters that separate the top 5% and the bottom 5%.

  • Firstly, Probability that the diameter separate the top 5% is given by;

        P(X > x) = 0.05

        P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{x-5.58}{0.04}[/tex] ) = 0.05

        P(Z > [tex]\frac{x-5.58}{0.04}[/tex] ) = 0.05

So, the critical value of x in z table which separate the top 5% is given as 1.6449, which means;

                      [tex]\frac{x-5.58}{0.04}[/tex]  = 1.6449

                   [tex]{x-5.58} = 1.6449 \times {0.04}[/tex]

                             [tex]x[/tex]  = 5.58 + 0.065796 = 5.65

  • Secondly, Probability that the diameter separate the bottom 5% is given by;

        P(X < x) = 0.05

        P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{x-5.58}{0.04}[/tex] ) = 0.05

        P(Z < [tex]\frac{x-5.58}{0.04}[/tex] ) = 0.05

So, the critical value of x in z table which separate the bottom 5% is given as -1.6449, which means;

                      [tex]\frac{x-5.58}{0.04}[/tex]  = -1.6449

                   [tex]{x-5.58} = -1.6449 \times {0.04}[/tex]

                             [tex]x[/tex]  = 5.58 - 0.065796 = 5.51

Therefore, the two diameters that separate the top 5% and the bottom 5% are 5.51 and 5.65 respectively.