Respuesta :
Answer:
The two skaters will move with a common speed of 1.19 m/s.
Explanation:
Given that,
Mass of Alex, [tex]m_1=90\ kg[/tex]
Initial velocity of Alex, [tex]u_1=1.5i\ m/s[/tex]
Mass of Barbara, [tex]m_2=57\ kg[/tex]
Initial velocity of Barbara, [tex]u_2=2j\ m/s[/tex]
After the collision, the two skaters move together at a common velocity. Let V is the common velocity. Using the conservation of momentum as :
[tex]m_1u_1+m_2u_2=(m_1+m_2)V\\\\90\times 1.5i+57\times 2j=(90+57)V\\\\V=\dfrac{135i+114j}{147}\\\\V=\dfrac{135i}{147}+\dfrac{114j}{147}\\\\V=(0.91i+0.77j)\ m/s[/tex]
Magnitude of final velocity:
[tex]|V|=\sqrt{0.91^2+0.77^2} \\\\|V|=1.19\ m/s[/tex]
So, the two skaters will move with a common speed of 1.19 m/s.
Answer:
1.21 m/s
Explanation:
mass of Alex, mA = 90 kg
initial velocity of Alex, uA = 1.5 i m/s
mass of Barbara, mB = 57 kg
initial velocity of Barbara, uB = 2 j m/s
Let v is the velocity of combined mass after collision.
Use conservation of momentum
[tex]90\times 1.5\widehat{i}+57\times 2\widehat{j}=(90+57)\overrightarrow{v}[/tex]
[tex]\overrightarrow{v} = 0.92\widehat{i}+0.78\widehat{j}[/tex]
[tex]v=\sqrt{0.92^{2}+0.78^{2}}[/tex]
v = 1.21 m/s
Thus, the velocity of combined mass is 1.21 m/s.