Water is flowing at the rate of 40 m cubed divided by min from a shallow concrete conical reservoir​ (vertex down) of base radius 50 m and height 5 m. a. How fast​ (centimeters per​ minute) is the water level falling when the water is 3 m ​deep? b. How fast is the radius of the​ water's surface changing​ then? Answer in centimeters per minute.

Respuesta :

Answer:

a)1.414 cm/min

b)14.14 cm/min

Step-by-step explanation:

Volume of a cone can be determined by the formula i.e

V= 1/3 πr²h

where, 'h'is height and 'r' is radius

Now, when height and radius of  shallow concrete conical reservoir is,

r= 50m = 5000cm

h= 5m = 500cm

As height and radius are proportional, we can write

[tex]\frac{h}{r} =500/5000[/tex]

h= [tex]\frac{1}{10}r[/tex] ⇒ r= 10h

As the water is flowing and filling up reservoir at the rate of 40 m³/min

So,

[tex]\frac{dV}{dt} =[/tex] 40 x [tex]10^{6}[/tex] cm³/min

a) in this part, we have to find [tex]\frac{dh}{dt}[/tex] and the height given is:

height 'h'= 3m=> 300m

Therefore,

V= 1/3 πr²h => 1/3 π (10h)² h

V= 100 π h³/ 3

[tex]\frac{dV}{dt} =[/tex] [tex]\frac{100}{3}[/tex]π 3h² [tex]\frac{dh}{dt}[/tex]

40 x [tex]10^{6}[/tex] =  [tex]\frac{300}{3}[/tex] π300²[tex]\frac{dh}{dt}[/tex]

[tex]\frac{dh}{dt}[/tex] =  40 x [tex]10^{6}[/tex]  / (100 x 300²)π

[tex]\frac{dh}{dt}[/tex] = 1.414 cm/min

b) in this part, we need to find how  fast is the radius of the​ water's surface changing​ i.e [tex]\frac{dr}{dt}[/tex]

We have h=300 cm . therefore, r= 10h => 10(300)

r= 3000

V= 1/3 πr²h =>1/3 πr² [tex]\frac{1}{10}r[/tex]

V= 1/30 πr³

Applying Derivation both side w.r.t to 't'

[tex]\frac{dV}{dt} = \frac{1}{30}[/tex]π 3r²[tex]\frac{dr}{dt}[/tex]

40 x [tex]10^{6}[/tex] = 1/10 π (3000)² [tex]\frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}[/tex]= 40 x [tex]10^{6}[/tex] x 10 / π (3000)²

[tex]\frac{dr}{dt}[/tex]= 14.14 cm/min

Thus,  the radius of the​ water's surface is changing at the rate of 14.14 cm/min