A 2.0-kg object moving with a velocity of 5.0 m/s in the positive x direction strikes and sticks to a 3.0-kg object moving with a speed of 2.0 m/s in the same direction. How much kinetic energy is lost in this collision

Respuesta :

Answer:

5.4 J.

Explanation:

Given,

mass of the object, m = 2 Kg

initial speed, u = 5 m/s

mass of another object,m' = 3 kg

initial speed of another orbit,u' = 2 m/s

KE lost after collusion = ?

Final velocity of the system

Using conservation of momentum

m u + m'u' = (m + m') V

2 x 5 + 3 x 2 = ( 2 + 3 )V

16 = 5 V

V = 3.2 m/s

Initial KE = [tex]\dfrac{1}{2}mu^2 + \dfrac{1}{2}m'u'^2[/tex]

              = [tex]\dfrac{1}{2}\times 2\times 5^2 + \dfrac{1}{2}\times 3 \times 2^2[/tex]

              = 31 J

Final KE = [tex]\dfrac{1}{2} (m+m')V^2 = \dfrac{1}{2}\times 5 \times 3.2^2 = 25.6 J[/tex]

Loss in KE = 31 J - 25.6 J = 5.4 J.

The Kinetic energy lost in this collision will be "5.4 J".

Given values:

Mass of object,

  • [tex]m = 2 \ kg[/tex]
  • [tex]m' = 3 \ kg[/tex]

Initial speed,

  • [tex]u = 5 \ m/s[/tex]
  • [tex]u' = 2 \ m/s[/tex]

By using conservation of momentum,

→ [tex]mu = m'u' = (m+m') V[/tex]

By putting the values,

[tex]2\times 5+3\times 2=(2+3) V[/tex]

                 [tex]16=5 \ V[/tex]

                  [tex]V = \frac{16}{5}[/tex]

                      [tex]= 3.2 \ m/s[/tex]

Now,

The initial K.E will be:

= [tex]\frac{1}{2} mu^2+\frac{1}{2} m'u'^2[/tex]

= [tex]\frac{1}{2}\times 2\times 5^2+\frac{1}{2}\times 3\times 2^2[/tex]

= [tex]31 \ J[/tex]

The final K.E will be:

= [tex]\frac{1}{2} (m+m')V^2[/tex]

= [tex]\frac{1}{2}\times 5\times 3.2^2[/tex]

= [tex]25.6 \ J[/tex]

hence,

The loss in K.E will be:

= [tex]31-25.6[/tex]

= [tex]5.4 \ J[/tex]                  

Thus the above approach is right.

Learn more about K.E here:

https://brainly.com/question/14157930