Respuesta :
Answer: 3.07 and 0.357
Step-by-step explanation:
To solve the problems above, we use the F- distribution or statistic to test the equality of variance in a two tailed test.
We can employ the excel function :
F.INV.RT(alpha, deg_of _freedom1, deg_of_freedom2) to get the right tail and
F. INV(alpha, deg_of _freedom1, deg_of_freedom2)
alpha = 0.1
For a two tailed test ;
Alpha = 0.1 ÷ 2 = 0.05
Deg_of freedom1 = (number of observation1 - 1)
Deg_of freedom1 = 13 - 1 = 12
Deg_of freedom2 = (number of observation2 - 1)
Deg_of freedom2 = 10 - 1 = 9
Right tail:
F.INV.RT(0.05,12,9) = 3.07
F.INV(0.05,12,9) = 0.357
The critical values are: 3.07 and 0.357 respectively
How to determine the critical values
The given parameters are:
[tex]\alpha = .10[/tex]
Boeing 777
[tex]n_1 = 13[/tex]
[tex]\bar x_1 = 59.5[/tex]
[tex]\sigma_1 = 8.4[/tex]
Boeing 787
[tex]n_2 = 10[/tex]
[tex]\bar x_2 = 64.3[/tex]
[tex]\sigma_2 = 12.4[/tex]
Start by calculating the degrees of freedom of both samples
[tex]df = n - 1[/tex]
So, we have:
[tex]df_1 = 13 - 1\\\\[/tex]
[tex]df_1 = 12[/tex]
[tex]df_2 = 10 - 1\\[/tex]
[tex]df_2 = 9[/tex]
Calculate the level of significance
[tex]s = \frac{\alpha}{2}[/tex]
[tex]s = \frac{0.10}{2}[/tex]
[tex]s = 0.05[/tex]
Next, we use the table of values for the critical values
At significance level of 0.05, degree of freedom of 12 and 9
The critical values are:
Sample 1 = 3.07
Sample 2 = 0.357
Hence, the critical values are: 3.07 and 0.357 respectively
Read more about critical values at:
https://brainly.com/question/16112320