A thermistor is placed in a 100 °C environment and its resistance measured as 20,000 Ω. The material constant, β, for this thermistor is 3,650 °C. Find: If the thermistor is then used to measure a particular temperature, and its resistance is measured as 500 Ω, determine the thermistor temperature.

Respuesta :

Answer:

the thermistor temperature = [tex]325.68 \ ^0 \ C[/tex]

Explanation:

Given that:

A thermistor is placed in a 100 °C environment and its resistance measured as 20,000 Ω.

i.e Temperature

[tex]T_1 = 100^0C\\T_1 = (100+273)K\\\\T_1 = 373\ K[/tex]

Resistance of the thermistor [tex]R_1 =[/tex] 20,000 ohms

Material constant [tex]\beta[/tex] = 3650

Resistance of the thermistor [tex]R_2[/tex] = 500 ohms

Using the equation :

[tex]R_1 = R_2 \ e^{\beta} (\frac{1}{T_1}- \frac{1}{T_2})[/tex]

[tex]\frac{R_1}{ R_2} = \ e^{\beta} (\frac{1}{T_1}- \frac{1}{T_2})[/tex]

Taking log of both sides

[tex]In \ \frac{R_1}{ R_2} = In \ \ e^{\beta} (\frac{1}{T_1}- \frac{1}{T_2})[/tex]

[tex]In \ \frac{R_1}{ R_2} = {\beta} (\frac{1}{T_1}- \frac{1}{T_2})[/tex]

[tex]\frac{ In \ \frac{R_1}{ R_2}}{ {\beta}} = (\frac{1}{T_1}- \frac{1}{T_2})[/tex]

[tex]\frac{1}{T_2} = \frac{1}{T_1} - \frac{ In \ \frac{R_1}{ R_2}}{ {\beta}}[/tex]

[tex]{T_2} = \frac{\beta T_1}{\beta - In (\frac{R_1}{R_2})T}[/tex]

Replacing our values into the above equation :

[tex]{T_2} = \frac{3650*373}{3650 - In (\frac{20000}{500})373}[/tex]

[tex]{T_2} = \frac{1361450}{3650 - 3.6888*373}[/tex]

[tex]{T_2} = \frac{1361450}{3650 - 1375.92}[/tex]

[tex]{T_2} = \frac{1361450}{2274.08}[/tex]

[tex]{T_2} = 598.68 \ K[/tex]

[tex]{T_2} = 325.68 \ ^0 \ C[/tex]

Thus, the thermistor temperature = [tex]325.68 \ ^0 \ C[/tex]