Answer:
The mass of the planet is [tex]M_{planet} =[/tex] 144.5 × [tex]10^{25}[/tex] kg
Explanation:
We know that g for the planet is given by
[tex]g = G \frac{M_{planet} }{r^{2} }[/tex]
[tex]M_{planet} = \frac{gr^{2} }{G}[/tex] --------- (1)
Acceleration is given by
[tex]a = \frac{2(y_2-y_1)}{t^{2} }[/tex]
[tex]a = \frac{2(1.90)}{0.54^{2} }[/tex]
[tex]a = g = 13.03 \frac{m}{s^{2} }[/tex]
Radius of the planet R = 8.6 × [tex]10^{7}[/tex] meter
Now put the value of g & R in equation (1)
[tex]M_{planet} = \frac{(13.03)(8.6)^{2}(10^{14} ) }{6.67 (10^{-11} )}[/tex]
[tex]M_{planet} =[/tex] 144.5 × [tex]10^{25}[/tex] kg
Therefore the mass of the planet is [tex]M_{planet} =[/tex] 144.5 × [tex]10^{25}[/tex] kg